Search results for "Primitive cell"
showing 5 items of 5 documents
Thermodynamics of ABO3-Type Perovskite Surfaces
2011
The ABO3-type perovskite manganites, cobaltates, and ferrates (A= La, Sr, Ca; B=Mn, Co, Fe) are important functional materials which have numerous high-tech applications due to their outstanding magnetic and electrical properties, such as colossal magnetoresistance, half-metallic behavior, and composition-dependent metal-insulator transition (Coey et al., 1999; Haghiri-Gosnet & Renard, 2003). Owing to high electronic and ionic conductivities. these materials show also excellent electrochemical performance, thermal and chemical stability, as well as compatibility with widely used electrolyte based on yttrium-stabilized zirconia (YSZ). Therefore they are among the most promising materials as …
Prediction of Weak Topological Insulators in Layered Semiconductors
2012
We report the discovery of weak topological insulators by ab initio calculations in a honeycomb lattice. We propose a structure with an odd number of layers in the primitive unit-cell as a prerequisite for forming weak topological insulators. Here, the single-layered KHgSb is the most suitable candidate for its large bulk energy gap of 0.24 eV. Its side surface hosts metallic surface states, forming two anisotropic Dirac cones. Though the stacking of even-layered structures leads to trivial insulators, the structures can host a quantum spin Hall layer with a large bulk gap, if an additional single layer exists as a stacking fault in the crystal. The reported honeycomb compounds can serve as…
Quaternary Heusler Compounds without Inversion Symmetry: CoFe 1+ x Ti 1– x Al and CoMn 1+ x V 1– x Al
2011
We report the quaternary Heusler compound derivatives CoFe1+xTi1–xAl and CoMn1+xV1–xAl, which do not have centers of inversion. Classical T2T′M (T, T′ = transition metal, M = main group element) Heusler compounds (prototype: Cu2MnAl) crystallize in the L21 structure, space group Fmm (225) that exhibits a center of inversion. Replacing one of the T2 atoms by another transition element (T″) results in a quaternary TT′T″M compound with F3m symmetry (Y; structure type LiMgPdSn) without center of inversion. In the case of “quasi closed shell” compounds with 24 valence electrons in the primitive cell, one expects the absence of ferromagnetism according to the Slater–Pauling rule. Increasing the n…
Crystal Data for Metal Cimetidine Isotiocionates: M(CM)2(NCS)2 (M = Co(II), Ni(II), Cu(II))
1992
AbstractMetal cimetidine isothiocyanates, M(C10H16SN6)2(NCS)2, where M = Co(II), Ni(II) and Cu(II), have been investigated by means of X-ray powder diffraction. Unit cell dimensions were determined from powder diffractometer data. Refined cell parameters (monoclinic with a primitive cell), powder data, calculated densities and Z value are presented.
Atomic, electronic and thermodynamic properties of cubic and orthorhombic LaMnO3 surfaces
2009
We studied in detail the atomic and electronic structure of the LaMnO3 surfaces, in both cubic and orthorhombic phases, combining GGA-plane wave approach, as implemented into the VASP-4.6.19 computer code, with a slab model. These studies are complemented by a thermodynamic analysis of the surface stability at different gas pressures and temperatures. The obtained results are compared with similar studies for other ABO3-perovskites. 2008 Elsevier B.V. All rights reserved. The ABO3-type perovskite manganites and cobaltates (A = La, Sr, Ca; B = Mn, Co) are important functional materials with numerous high-tech applications [1]. Some of them require understanding and control surface properties…